Starship Drives

The drives for a ship determine its ability to move and maneuver. Select the Interstellar (J) drive, the Interplanetary (M, G) drive, and the Power Supply (P).

DRIVE TONNAGE

Drive	Rating	J	Μ	Ρ	G
Letter	EP	J-Drive	M-Drive	P-Plant	G-Drive
Α	100	10	2	4	9
В	200	15	3	7	18
С	300	20	5	10	27
D	400	25	7	13	36
E	500	30	9	16	45
F	600	35	11	19	54
G	700	40	13	22	63
Н	800	45	15	25	72
J	900	50	17	28	81
K	1000	55	19	31	90
L	1100	60	21	34	99
M	1200	65	23	37	108
N	1300	70	25	40	117
P	1400	75	27	43	126
Q	1500	80	29	46	135
R	1600	85	31	49	144
S	1700	90	33	52	153
	1800	95	35	55	162
U	1900	100	37	58	1/1
V	2000	105	39	61	180
VV	2100	110	41	64	189
X	2200	115	43	67	198
ř Z	2300	120	45	70	207
	2400	140	47	73	210
	2000	140	50	00	254
F2	2000	160	54	00	202
Q2 P2	3200	170	50	92	270
S2	3/00	180	66	104	306
T2	3600	100	70	110	324
112	3800	200	70	116	342
V2	4000	210	78	122	360
W2	4200	220	82	128	378
X2	4400	230	86	134	396
Y2	4600	240	90	140	414
Z2	4800	250	94	146	432

DRIVE COSTS			DRIV	E TL	ONE	Ξ
Drive	Cost per	Ton	TL	J	Μ	F
Jump Drive	MCr	1.0	8	-		1
Maneuver Drive	MCr	2.0	9	1	4*	2
Power Plant	MCr	3.0	10	1	7*	3
Gravitic Drive	MCr	0.5	11	2	9*	4
			12	3	-	5
			13	4	-	6
Drive TL One Tal	14	5	-	7		
maximum output por	15	6	-	8		
drive by Tech Level.	16	6	-	ç		
* Maneuver Drive	17	7	-			
restricted by Power	18	7	-			

19

20

21

8

8

9

THE BASIC DRIVES

The basic available drives are:

Jump Drive. The interstellar drive. Jumps are measured in parsecs; one Jump (regardless of distance) requires one week.

05 Drives

A Jump Drive requires 10% of Hull Tonnage per Jump number (subject to PPlant Overclock). A Jump Drive can perform any length Jump up to its maximum Potential.

Maneuver Drive. Performance is measured in Gs (= 10 meters per second per second). Because it interacts with gravity sources, it must be within 1000 D of a gravity source (beyond 1000 D, it operates at 1% Performance). Requires a supporting Power Plant.

Power Plant. A Fusion Power Generator with OverClock capabilities. A Power Plant requires 1 ton of fuel times Drive Potential times Hull Number per week to support normal operations.

Gravitic Drive. A near-world drive. Performance is measured in Gs. Because it interacts with gravity sources, it must be within 10 D of a gravity source. G-Drive includes an integral Power Source.

DRIVE POTENTIAL

Each Drive has a Potential (an Output Rating) based on the interaction of Drive Tonnage and Hull Tonnage. Drive Potential is calculated from the Drive Potential Table and influences fuel usage and ship performance.

STAGE EFFECTS

	Stage		QREBS	OC	Tons	Cost		
Ex	Experimental*	- 3	Full	50	x3	x10		
Pr	Prototype**	- 2	3 of 5	80	x2	x3		
Er	Early	- 1	1 of 5	90		x2		
	(Standard)	+0		100				
Im	Improved	+1	+1 of 5	110				
Ad	Advanced	+2	+3 of 5	120				
20 Overale eletter Dever Director entry importante Torres								

OC= Overclock (for Power Plants only; ignore Tons).

OVERCLOCK

Overclock is a measure of the efficiency of a Power Plant. A standard Power Plant operates with Overclock= 100 for Potential based on Tech Level. Power Plants at other TLs have different Overclock. Overclock affects Power Plant tons and Jump Fuel tons.

True Power Plant tons = P- Plant Tons / (OC/100) True Jump Fuel tons= Fuel / (OC/100)

DRIVE TL TWO

	Potential=	1	2	3	4	5	6	7	8	9	
Μ	M-Drive	9	9	9	9	10	10	10	11	11	
G	G-Drive	8	8	8	8	9	9	9	10	10	
Р	P-Plant	8	9	10	11	12	13	14	15	16	
J	J-Drive	9	11	12	13	14	15	17	19	21	

availability.

by Drive Potential.

Drive TL Two Table. Lookup TL

G

4

7

9

